
APPLICATION

pavo: an R package for the analysis, visualization and

organization of spectral data

RafaelMaia1*, ChadM. Eliason1, Pierre-Paul Bitton2, St�ephanieM. Doucet2 and

MatthewD. Shawkey1

1Department of Biology, Integrated Bioscience Program, University of Akron, Akron, OH, 44325–3908, USA; and 2Department

of Biological Sciences, University ofWindsor, 401 Sunset Avenue, Biology Building,Windsor, Ontario, N9B 3P4, Canada

Summary

1. Recent technical and methodological advances have led to a dramatic increase in the use of spectrometry to

quantify reflectance properties of biological materials, as well as models to determine how these colours are per-

ceived by animals, providing important insights into ecological and evolutionary aspects of animal visual com-

munication.

2. Despite this growing interest, a unified cross-platform framework for analysing and visualizing spectral data

has not been available. We introduce pavo, an R package that facilitates the organization, visualization and

analysis of spectral data in a cohesive framework. pavo is highly flexible, allowing users to (a) organize and

manipulate data from a variety of sources, (b) visualize data using R’s state-of-the-art graphics capabilities

and (c) analyse data using spectral curve shape properties and visual systemmodelling for a broad range of taxa.

3. In this paper, we present a summary of the functions implemented in pavo and how they integrate in a work-

flow to explore and analyse spectral data. We also present an exact solution for the calculation of colour volume

overlap in colourspace, thus expanding previously publishedmethodologies.

4. As an example of pavo’s capabilities, we compare the colour patterns of three African glossy starling species,

two of which have diverged very recently. We demonstrate how both colour vision models and direct spectral

measurement analysis can be used to describe colour attributes and differences between these species. Different

approaches to visual models and several plotting capabilities exemplify the package’s versatility and streamlined

workflow.

5. pavo provides a cohesive environment for handling spectral data and addressing complex sensory ecology

questions, while integrating withR’smodular core for a broader and comprehensive analytical framework, auto-

matedmanagement of spectral data and reproducible workflows for colour analysis.

Key-words: animal communication, colour, colourspace, receptor noise, reflectance, sensory

ecology, spectrometry, visual model

Introduction

The role of colouration and colour vision in animal communi-

cation has been a fundamental question in evolutionary biol-

ogy for many decades (Darwin 1859, 1896; Poulton 1890;

Bennett & Th�ery 2007). Studies on visual communication have

shed light on various aspects of natural (Chittka & Menzel

1992) and sexual selection (Hill 2002), and how these interact

(Kemp et al. 2009). It is also an ideal system for truly integra-

tive biological research, spanning from the optical processes

generating colour (Shawkey et al. 2009), hormonal and genetic

mechanisms regulating phenotype (Muller &Eens 2009), phys-

iological processes involved in perceiving the signal (Hart

2001), and its adaptive and evolutionary patterns (Badyaev &

Hill 2003; Darst et al. 2006).

However, ‘colour’ refers to a sensory experience, not an

objective quantity, and the realization that animals can vary

quite considerably in their visual system and how they process

this information prompted two important methodological

advances. First, it highlighted the need for an objective quanti-

fication of the energy reflected at different wavelengths, as a

first approximation of a ‘receiver-independent’ measure of an

organism or object’s colour (Endler 1993; Eaton & Lanyon

2003; Bennett & Th�ery 2007). Over the last 20 years, the rising

popularity of portable spectrometers has made objective quan-

tification of the spectral properties of animal and plant integu-

ments commonplace (Endler 1990; Eaton & Lanyon 2003;

Andersson & Prager 2006). Second, advances in the under-

standing of perception and processing of colour have allowed

analysis of reflectance data using visual models that estimate

how animals see and differentiate these colours (Goldsmith

1990; Tovee 1995; Vorobyev & Osorio 1998; Vorobyev et al.

1998).*Correspondence author. E-mail: rm72@zips.uakron.edu
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Because of these advances, a cohesive framework for work-

ing with and analysing colour from reflectance data is needed.

Output file types from spectrometer manufacturers are not

standardized, and though existing software programs have

provided helpful implementations of several methodologies

(Gomez 2006; Stoddard & Prum 2008; Montgomerie 2006),

they are often limited in the number or types of methodologies

implemented, the types of data they can import and process, or

the platforms in which they are available. Moreover, many are

proprietary and/or closed, hindering customization (for a

review of available software, see Montgomerie 2006). Further-

more, once the relevant colour data are extracted, they often

require additional conversion and export into statistical

software for analyses, which precludes protocol standardiza-

tion across laboratories, batch processing, and automation of

workflows.

Here, we introducepavo – a package forR (RDevelopment

Core Team 2013) that addresses these problems by providing a

flexible, yet cohesive, environment in which researchers can

organize, analyse and visualize colour data generated by spec-

trometry. R is open source and multi-platform and is rapidly

becoming the working language for scientific programming

and data analysis, particularly in ecology and evolution (e.g.

Paradis et al. 2004; Bolker 2008). pavo incorporates R’s flexi-

bility using object classes that can seamlessly interpret each

other, providing functions that can be used to import, explore,

process, and analyse spectral colour data under a variety of

user-defined models. We propose that combining these proce-

dures under a coherent framework not only streamlines work-

flow, but also allows data to be explored and manipulated in

ways that can be used to visualize patterns, obtain information,

and develop and test hypotheses (Fig. 1).

The pavopackage

The stable release of pavo is available from CRAN (http://

CRAN.R-project.org/package=pavo) for direct installation

from R, and the development version is available from github

(https://github.com/rmaia/pavo). pavo was developed with

three main workflow stages in mind (Fig. 1): organization of

spectral data by inputting raw files and processing their spec-

tral content; visualization of the output, including exploratory

capacities to identify further requiredmanipulations and previ-

ously unconsidered patterns; and analysis of data from the

spectral shape of reflectance curves or by incorporating recei-

ver psychophysiology in visual models. As noted by Bennett &

Th�ery (2007) and others (Andersson & Prager 2006; Mont-

gomerie 2006), though spectral data have become common-

place in studies of animal colouration, it is easy to obtain poor-

quality or inaccurate data. Therefore, a workflow for spectral

Fig. 1. Examplepavoworkflow, highlighting itsmain functions and plotting capabilities.
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colour data analysis has to go beyond a ‘plug and chug’ imple-

mentation, requiring thorough exploratory investigation.With

this in mind, pavo takes advantage of R’s object-oriented

programming environment to implement modular functions

that allow each of these steps to be explored and to work cohe-

sively. Below we outline pavo’s organization, visualization

and analysis capabilities, followed by a detailed worked exam-

ple using African glossy starlings to demonstrate some of its

functionalities.

ORGANIZATION

Spectral data are stored in pavo and recognized for its func-

tions by use of a new object class, ‘rspec’, which inherits

methods from data.frame. Objects of class rspec are

characterized by having individual reflectance spectra as col-

umns of the data frame, with a first column containing the

associated wavelength values. Raw spectral data can be

imported using the function getspec, which currently sup-

ports data from a variety of software (including Ocean Optics

OOIBase and SpectraSuite files, Avantes AvaSpec and

CRAIC). In addition, spectral data that have been previously

compiled (into a spreadsheet, for example) can be imported

into R and converted to rspec objects using the as.rspec

function.

The use of dedicated R object classes allows generic func-

tions such as plot and summary to identify the object as a

particular type of data frame and interpret it accordingly (see

below). The class ‘vismodel’ is used to interpret spectral

data that have been processed through one of the visualmodels

implemented and also stores information on how it was gener-

ated (e.g. the visual phenotype, background and illuminant

used, and any transformations applied; see below). Addition-

ally, the ‘tcs’ class refers to tetrahedral colourspace models

(Endler & Mielke 2005; Stoddard & Prum 2008), and the

summary function can be used to extract summary variables,

such as the colour volume or hue span (Stoddard & Prum

2008) for groups and subsets of points.

It is common when collecting spectral data to take multiple

measurements from the same sample, averaging these to avoid

sampling error (Quesada & Senar 2006). pavo provides the

aggspec function for this purpose, as well as the procspec

function for noise removal via smoothing, and transforma-

tions to standardize and clean spectral data.

VISUALIZAT ION

With pavo installed and loaded, the plot function recog-

nizes rspec objects and plots them accordingly – interpreting

the first column as wavelengths (usually using it as the x axis)

and the remaining columns as reflectance values (y axis) for

individual spectra. Several plotting options for multiple spec-

tra are implemented (Fig. 1). In addition, the aggplot func-

tion provides plotting capabilities for among-spectra

summary statistics plotting (Fig. 1), with a similar syntax to

aggspec. pavo also offers exploratory plotting capabilities

that can be combined with data processing and formatting,

such as explorespec (for visualizing groups of spectra) and

smoothplot (for choosing smoothening parameters; Fig. 1).

Finally, pavo offers plotting capabilities for the avian tetra-

chromatic colourspace model (Stoddard & Prum 2008; Endler

& Mielke 2005) through the tcsplot and projplot

functions (Fig. 1, see below).

ANALYSIS

The summary function can be applied to rspec objects to

extract several objective (’receiver-independent’) reflectance

shape variables, relevant to specific or universal mechanisms of

colour signalling (e.g. pigments, structures) or colour percep-

tion (spectral intensity, location and purity). Description and

discussion of these variables can be found in Andersson &

Prager (2006) andMontgomerie (2006), as well as in the pack-

age vignette. Additionally, the function peakshape provides

descriptors of spectral peaks, such as the wavelength of maxi-

mum reflectance and the full width at half-maximum, and can

be fine-tuned to extract information from specific areas of the

curve. This implementation can be useful when the spectral

curve has multiple peaks or a complex shape (e.g. the UV peak

of carotenoid curves, Fig. 1).

pavo also allows the easy production of models that incor-

porate the visual system of the receiver through the vismodel

function. Models can be calculated incorporating the visual

phenotype (cone absorbance), background colour, and ambi-

ent illuminant (Vorobyev &Osorio 1998). Several avian recep-

tor phenotypes (Hart 2001; Endler & Mielke 2005) are

implemented as options, but user-defined receptor data from

any taxon can be used as model input. Further, the sensmodel

function implements the calculation of cone absorbance curves

based on peak sensitivity information (available from the liter-

ature, for example Hart 2001) and can also include oil droplet

and ocular transmission information in the calculations

(Govardovskii et al. 2000; Hart &Vorobyev 2005).

Visual models can be calculated in terms of absolute photon

catches, in which case the receptor noise model can be used to

infer contrast between colours (implemented in the function

coldist Vorobyev & Osorio 1998), or in relative cone

stimulation, in which case the model reduces to a colourspace

model represented in n�1 dimensions (where n is the number

of different receptors involved in colour vision; Goldsmith

1990; Endler & Mielke 2005; Stoddard & Prum 2008). Abso-

lute or relative cone stimulation can be selected by the logical

argument relative from the vismodel function. In the

case of the avian tetrahedral colourspace, several additional

variables can be calculated based on spherical coordinates

which represent the hue angles and saturation (the distance

from the achromatic centre; see Stoddard & Prum 2008) by

calling the tcs function. This function generates an object of

class tcs; a summary call from a tcs object will return sum-

mary statistics described in Stoddard & Prum (2008) for sets of

points (see below).

pavo also builds upon previously described visual model

methods. For example, Stoddard & Stevens (2011) presented

the useful technique of calculating the overlap between the
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volumes defined by two sets of points in colourspace. They

used this metric to quantify mimicry (Stoddard & Stevens

2011; Stoddard 2012), such that a greater volume overlap

would indicate greater overall colour similarity. Given the

complexity of calculating the intersection of three-dimensional

convex hulls, Stoddard & Stevens (2011) used a Monte Carlo

approach to estimate the degree of volume overlap. pavo,

instead, provides the exact solution for the calculation of the

intersection of colour volumes using a method originally

implemented to calculate the overlap between multidimen-

sional niches (Vill�eger et al. 2011) through the computational

geometry capabilities available from the rcdd package (Geyer

et al. 2012) (For performance and precision comparison, see

Supporting Information).

Worked example: colour divergence in glossy
starlings (Sturnidae)

Glossy starlings from the African clade have bright and

diverse iridescent colours likely used in courtship displays and

social competition (Rubenstein & Lovette 2009). Here, we

demonstrate some of pavo’s capabilities through a worked

example to compare the colours of a monophyletic clade of

three glossy starling species, two of which (Lamprotornis chlor-

opterus and L. elisabeth) have recently diverged and whose

status as full species is debated (Gill & Donsker 2012; Craig

et al. 1998; Lovette &Rubenstein 2007). The data used for this

example have been deposited online and is available from the

Dryad Database (Maia et al. 2013). Further information and

a ‘how-to’ of pavo’s main functions, including the formulae

used for the calculations, can be found in detail in the package

vignette – available online from CRAN or directly from

R using the command vignette(‘pavo’).

STEP 1: ORGANIZATION AND PROCESSING

The data consist of reflectance spectra in Avantes ‘.ttt’ out-

put format, which in this example are located in the folder

‘/Desktop/glossystarlings’ (by default, the current

working directory and the ‘.txt’ extension are used). The files

are named to indicate the species, bird ID, plumage patch

and measurement ID (for example, ‘LAAC.14423.

belly.001.ttt’ would be the first measurement taken from

the belly of individual 14423, aLamprotornis acuticaudus speci-

men). This is important because pavo uses the file name

(minus the file extension) to label the columns of the rspec

object with the imported reflectance spectra. We recommend

that users carefully consider and adhere to a rigorous file nam-

ing scheme to make subsetting and data manipulation easier

(see Andersson & Prager 2006 for a useful discussion and sug-

gestions in this regard). Additionally, we suggest that sample

identity labels should have the same number of characters,

which simplifies character string manipulation and subsetting

based on partial matching.

We measured reflectance spectra from 11 plumage patches

(see Fig. 2 for list) of four males from museum specimens of

each of the three species. Three measurements from different

locations within each patch were collected. We used the

getspec function to load these 396 raw spectral data files,

then used the aggspec function to average the spectra within

patches (as determined by the by argument) and the

procspec function to remove electrical noise arising from the

spectrometer (using local polynomial regression fitting, or

loess) with the following annotated lines of code:

#get raw data

>specs <- getspec(where =’�/Desktop/

glossystarlings’, ext=’ttt’, lim=c(300,700))

396 files found; importing spectra

==========================================

#average by groups of 3 spectral curves

>specs <- aggspec(specs, by=3, FUN="mean")

#remove electrical noise using

#Gaussian smoothing

>specs <- procspec(specs, opt="smooth")

processing options applied:

smoothing spectra with a span of 0.25

STEP 2: V ISUALIZATION

Next, we plotted spectra contained in the resulting rspec

object. We used aggplot to visualize the mean reflectance

curves for each body part from each species, as can be seen in

the example below for the ‘belly’ body patch (Fig. 2b):

#subset wavelength column and the

#12 spectra from the belly patch

>specs.belly <- subset(specs, "Belly")

#extract first 4 characters from column names

#(species labels)

>spp <- substr(names(specs.belly), 1, 4)

#average and plot spectral data by species

>aggplot(specs.belly, by=spp)

STEP 3: ANALYSIS

Colour distances

To explore how these colours may be perceived by birds, we

first used the vismodel function, which takes into account

avian visual sensitivities (sensory phenotype), to calculate the

quantum catches for each photoreceptor. pavo allows for

user-defined cone sensitivities, but also incorporates available

data from several taxa, including the European starling (Stur-

nus vulgaris, visual="star", Hart et al. 1998), which we

used for our example. We used the relative = FALSE

option from the vismodel function to obtain raw photon

catch values for the four avian photoreceptor classes ({usml}),
suitable for calculating chromatic distances DS, Vorobyev

et al., 1998).

vismodel can return either the calculated quantum catches

(Qi, the default) or values transformed according to Fechner’s

law (fi; the signal being proportional to the logarithm of the

quantum catch), as determined by the argument qcatch (not

used in the code below, hence the default, Qi, is returned). It

can also apply the von Kries transformation (normalizing by

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 906–913
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the stimulus’ background to account for receptor adaptation)

through the vonkries argument (which defaults to FALSE).

These settings are stored as arguments in the vismodel

object, are referenced by functions downstream in the work-

flow (e.g. coldist, below), and can be called using the

summary function:

>vm.star <- vismodel(specs, visual="star",

relative = FALSE)

>summary(vm.star)

visual model options:

* Quantal catch: Qi

* Visual system: star bt.dc

* Illuminant: ideal, scale = 1 (von Kries color

correction not applied)

* Background: ideal

* Relative: FALSE

Second, we used the coldist function to calculate colour

distances with receptor noise based on the relative photore-

ceptor densities (Vorobyev & Osorio 1998). We used relative

cone abundances (arguments n1, n2, n3 and n4) for the

European starling (Hart et al. 1998), and the v argument

was set to 0�1 to give a {‘l′}-cone Weber fraction (calculated

as v=
ffiffiffiffi

ni
p

) of approximately 0�05 (Vorobyev & Osorio 1998;

Vorobyev et al. 1998). The results of coldist give colour

distances (chromatic, DS, shown in Fig. 2; and achromatic,

DL) between all possible combinations of plumage patches in

a vismodel object and can be further subsetted (using the

subset argument) to focus on comparisons of interest (e.g.

colour difference between homologous patches of two spe-

cies, or between colour patches and a given background).

This argument employs regular expressions functionality and

thus allows for partial string matching of row names to the

rule specified in the argument. In this case, if we want

comparisons between a single type of patch, the subset

argument will have two values to match both patch1 and

patch2 columns:

>deltas <- coldist(vm.star, n1=1, n2=1.38,

n3=3.34, n4=3.46, v=0.1)

#subset only comparisons between wing spectra

>deltas.wing <- coldist(vm.star, n1=1, n2=1.38,

n3=3.34, n4=3.46, v=0.1, subset=c("Wing", "Wing"))

>head(deltas.wing, 3)

patch1 patch2 dS dL

1LAAC.260046.Wing LAAC.264607.Wing 2.661180 8.714508

2LAAC.260046.Wing LAAC.347959.Wing 2.790763 3.033686

3LAAC.260046.Wing LAAC.347960.Wing 5.158210 5.629931

We can see from Fig. 2a that the recently divergent

L. chloropterus and L. elisabeth have accumulated similar

levels of colour disparity as they have to their sister species,

L. acuticaudus. Considering a value of 1 as a threshold for Just

Noticeable Differences (JNDs, Fig. 2a dashed line), nearly all

plumage patch comparisons yield discernible colours, both

within the L. chloropterus – L. elisabeth subclade as well as

compared with theL. acuticaudus outgroup.

Spectral analysis

Another strength ofpavo is its ability to compare different col-

our metrics (Butler et al. 2011), such as those extracted directly

from the spectral curves (Fig. 2b) and thus do not consider

Fig. 2. (a) Plot showing colour distances (in

units of just noticeable differences, JNDs) by

patch (y-axis) for three pairs of African star-

ling species (Sturnidae). The dotted horizontal

line indicates JND = 1, above which the pair

of colour patches is considered to be distin-

guishable by birds. Points and error bars indi-

cate mean � standard error chromatic

distances between different pairs of species:

Lamprotornis chloropterus and L. elisabeth

(open circles); L. acuticaudus and L. elisabeth

(grey circles); andL. acuticaudus andL. chlor-

opterus (black circles). (b) Plot of mean

smoothed spectra for the belly body patch.

Line colours indicate species (green: L. acuti-

caudus, red: L. chloropterus, blue: L. elisa-

beth), and shaded areas indicate the standard

deviation of the spectral data. (c) Hue (wave-

length of maximum reflectance) values for

each specimen measured (points) and mean

per species (bars) for the belly patch (N = 4

individuals each; colours as in b).
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receiver visual system phenotype (see Andersson & Prager

(2006) for discussion). As many as 23 objective colourimetric

variables are calculated by the summary of an rspec object

(for a complete description and summary of formulae, see the

package vignette and Montgomerie 2006), but the subset

argument can be used to filter these variables. If subset =

TRUE, the variables described in Andersson & Prager (2006)

are returned, but a string of variable names can also be used as

a filter. For our example, we extracted and plotted an objective

metric of hue (wavelength of peak reflectance, Fig. 2c) for the

most contrasting body patch (‘belly", Fig. 2a) in the visual

model analysis:

# extract colour variables

>colr <- summary(specs.belly, subset=TRUE)

> head(colr, 3)

B2 S8 H1

LAAC.260046.Belly 18.92453 1.518254 520

LAAC.264607.Belly 12.31255 1.257920 481

LAAC.347959.Belly 11.20595 1.233001 486

# extract hue (H1)

> hue <- colr$H1

# extract species names

#(first 4 letters from row names)

>spp <- substr(rownames(colr), 1, 4)

# make box plots of hue (H1) by species

> boxplot(hue�spp)

Avian tetrahedral colourspace

To analyse these spectra in avian tetrahedral colourspace, we

used vismodel again, but now specifying relative=TRUE

to indicate that {usml} values should be scaled to sum of unity

for each observation.We then used the voloverlap function

to calculate the volumes occupied by each species’ plumage

patches, as well as their overlap. The plot=TRUE option

provides a useful graphical representation of the overlap in col-

ourspace (Fig. 3).

>vm.star.rel <- vismodel(specs, visual="star",

relative=TRUE)

> tcs.star <- tcs(vm.star.rel)

#subset points from the two species

> tcs.lael <- subset(tcs.star, "LAEL")

> tcs.lacl <- subset(tcs.star, "LACL")

> voloverlap(tcs.lael, tcs.lacl, plot=TRUE)

Conclusions and future directions

pavo implements colour analyses for reflectance data based

on both spectral properties and visual system receptor stimula-

tion, as well as a modular framework that allows the assump-

tions and parameters of such models to be tuned as necessary.

As such, it is particularly suited to compare and validate the

use of different colourimetrics (Butler et al. 2011), determine

the influence of various assumptions in visual models, or help

choose parameter values that would introduce the least bias in

visual models (Hanley 2013). pavo can also be used to

investigate the information content of colour signals using

receiver-specific visual systems (Pike et al. 2011) and answer

questions pertaining to signal production mechanisms (e.g.

comparing the relative contribution of pigments and structural

colours in various integuments; D’Alba et al. 2012). Currently,

the visual modelling functions implemented in pavo already

allow for any number of photoreceptors to be considered, but

colour distances can so far only be calculated for di-, tri- and

tetrachromats. Implementing extensions of the Vorobyev &

Osorio (1998) model will allow pavo to calculate colour dis-

tances considering the visual systems of organisms such as but-

terflies (e.g. six photoreceptors in Pierids and Papilio

butterflies; Morehouse & Rutowski 2010, Arikawa 2003) and

mantis shrimps (Order Stomapoda; 16 photoreceptors; Cronin

et al. 1993).

Furthermore, as an R package, pavo provides a direct

integration with the growing number of statistical procedures

that the language incorporates, facilitating a streamlined

workflow from initial data input to final analysis. It therefore

allows the inclusion of colour analysis from spectral data in

open and reproducible workflows, which can be directly

automated and adjusted for consistency. Finally, pavo will

continue to incorporate reference data for illuminants, back-

grounds, photoreceptors, and other components of visual

systems (e.g. ocular media; Siebeck & Marshall 2001) as they

become available, providing a repository of spectral and col-

our data for physiological models across a broad range of

taxa.

Citation ofmethods implemented in pavo

Most of the methods implemented in pavo have been thor-

oughly described in their original publications, to which users

should refer for details and interpretation. For reflectance

shape variables (‘objective colourimetrics’) and their particular

relation to signal production and perception, see Andersson &

Prager (2006) and Montgomerie (2006). Visual models based

on photon catches and receptor noise are detailed in the study

by Vorobyev & Osorio (1998) and Vorobyev et al. (1998), and

photoreceptor sensitivity curve estimation in the study byGov-

ardovskii et al. (2000) and Hart & Vorobyev (2005). For tetra-

Fig. 3. Colourspace occupied by the recently diverged Lamprotornis

chloropterus (red) and L. elisabeth (blue). The colour volume overlap

between the two species is shown in grey. For reference, the avian tetra-

hedral colourspace (inset) shows the {usml} colour vertices, with the

location of the volumes in the colourspace indicated by an ‘x’.
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hedral colourspace model implementations and variable calcu-

lations, see Endler & Mielke (2005) and Stoddard & Prum

(2008), and for colour volume overlap, see Stoddard & Stevens

(2011) and Stoddard (2012). Users of the functions that apply

these methods should cite the original sources as appropriate,

along with pavo.

Data accessibility

Data for the examples have been deposited in theDryad repository: http://dx.doi.

org/10.5061/dryad.298b1
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